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Named Entity Recognition (NER) from text constitutes the first step in many text mining applications. The most important
preliminary step for NER systems using machine learning approaches is tokenization where raw text is segmented into tokens.
This study proposes an enhanced rule based tokenizer, ChemTok, which utilizes rules extracted mainly from the train data set. The
main novelty of ChemTok is the use of the extracted rules in order to merge the tokens split in the previous steps, thus producing
longer and more discriminative tokens. ChemTok is compared to the tokenization methods utilized by ChemSpot and tmChem.
Support Vector Machines and Conditional Random Fields are employed as the learning algorithms.The experimental results show
that the classifiers trained on the output of ChemTok outperforms all classifiers trained on the output of the other two tokenizers
in terms of classification performance, and the number of incorrectly segmented entities.

1. Introduction

Chemical domain is very active research field where there
is a rapid accumulation of scientific articles and abstracts
in repositories such as Medline and PubChem [1]. There-
fore there is an imminent need for automatic extraction
systems in order to mine useful knowledge from this vast
amount of available information. Recently, there has been
an increasing demand to facilitate various kinds of chemical
information retrieval tasks from raw text, including scientific
papers, books, patents, or technical reports. Named Entity
Recognition (NER) is a subtask of information extraction
(IE) that seeks to locate and classify elements of text into
predefined categories such as names of locations, peoples,
and organizations in newswire domain; protein; and gene
names in the biomedical domain and types of compounds in
the chemical/drug domain [2, 3]. It is usually regarded as a
preliminary first step of many other text mining tasks such
as relation extraction between chemical compounds, drug-
drug relation detection, and event detection [4].Therefore the
success of the NER task may significantly affect the overall
performance of these text mining applications.

Text mining in chemical domain has attracted significant
interest from the text mining community in the recent years.
Currently, one of the most important tracks of information
extraction in chemical text mining tasks is to find valuable
chemical/drug names in a given text.This taskwill be referred
to as the ChemNER task in the discussion that follows. Due to
the complexities of the language and the notation used in this
domain, the success in ChemNER has yet to reach the levels
achieved in other domains. ChemNER can be considered as
a sequence labeling problem where the final goal is to assign
a predefined class label to each part of the given text [4, 5].
Researchers in the field have utilized different types of NER
systems such as rule based, dictionary based, and machine
learning based as well as hybrid systems. However, most
state-of-the-art systems are based on supervised machine
learning algorithms which require text to be segmented
into meaningful units known as tokens prior to subsequent
processing [4]. Tokens can be defined as the smallest discrete
units of meaning in a document relevant to the task at
hand or the smallest entities of information that cannot be
further reduced in form and still carry that information [6].
However, in the biomedical domain and more specifically in
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the chemical/drug domain, tokens do not necessarily carry
meaning.

Various methods for tokenization of text exist in the
biomedical/chemical domain. In order to extract noun
phrases from Medline articles, Bennett et al. [7] used a
white space tokenizer that was modified to accommodate
embedded punctuation used extensively in the specialized
nomenclature of the domain. Seki and Mostafa [8] used
dictionary look up based approach for protein name extrac-
tion by using hand crafted rules and filtering to identify
protein name candidates to check against their dictionary.
At the tokenization step, Kayaalp et al. [9] normalized
input data by converting all letters to lowercase, as well as
grouping all consecutive white spaces into a single white
space. Additionally, they looked for hyphenated variants of
tokens containing both alphabetic and numeric characters.
Barrett and Weber-Jahnke [10] considered tokenization as
a classification task and proposed a method to build a
biomedical tokenizer using the token lattice design pattern
by adopting the Viterbi algorithm. Their classifier-based
tokenizer splits or joins textual objects through classification
to form tokens. Arens [6] introduced another classification
based tokenization method for bioscience texts where the
tokenization task is considered as a punctuation classification
problem as delimiters and nondelimiters.

Two recent ChemNER systems that can be considered
as state-of-the-art are tmChem developed by Leaman et
al. [11] and Chemspot [12] is developed by Rocktäschel et
al. [13]. tmChem is an open-source software tool used for
identifying chemical names in biomedical literature. It uses
Conditional Random Fields (CRFs) with a rich set of features
and postprocessing modules [11]. tmChem utilizes the tok-
enization method employed in tmVar [14] which was used to
extract sequence variants in biomedical text.This tokenizer is
referred to as the tmVar tokenizer in the following discussion.
tmVar tokenizer segments text into tokens at whitespaces,
punctuations, digits, lowercase letters, and uppercase letters
as well as special characters. Additionally, it splits strings on
subsequent use of uppercase and lowercase letters. One of the
most successful chemical NER systems, Chemspot, employs
a hybrid method combining a CRF and a dictionary. Even
though the tokenizer of Chemspot, henceforth referred to
as Chemspot, is freely available for use, the implementation
details are not provided.

It can be argued that, in general the shortcomings of a
tokenization method may result in incorrect segmentation of
named entities. However, to the best of the authors’ knowl-
edge there is no work which establishes a set of standard and
globally accepted rules for tokenizing biomedical/chemical
text. The effect of tokenizers on chemical or biomedical NER
performance has not been investigated either. Although He
and Kayaalp [16] compared 13 tokenizers used on Medline,
by observing the tokenizer outputs, as Habert et al. mention
in [17] there is no standard method for evaluating the quality
of tokenization.

In this study, a rule based tokenizer which uses manually
extracted rules from the training data set of ChemDNER task
of BioCreative IV (BioCreative) is proposed. The proposed

method aims at generating longer tokens without incorpo-
rating irrelevant text which may violate the Named Entity
(NE) boundaries. Two state-of-the-art supervised machine
learning algorithms used for sequence labeling, namely, Sup-
port Vector Machines (SVM) [18] and Conditional Random
Fields (CRFs) [19], have been employed as classification
systems. The effects of different tokenization methods have
been investigated from two perspectives. Firstly the effect
of tokenization on NER performance in terms of 𝐹-score
is studied. Secondly the violation of the Named Entity
boundaries caused by tokenization is analyzed. The latter
is referred to as “incorrectly segmented entities.” Two of
the most comprehensive chemical/drug related data sets,
namely, BioCreative IV Critical Assessment of Informa-
tion Extraction in Biology (ChemDNER) corpus [20] and
SemEval 2013 Drug Name Recognition corpus [21, 22], are
used in the experiments. We compare the performance of
the NER classifiers which utilize the proposed tokenizer,
named as ChemTok, to the tokenizers of two state-of-the-art
systems recently employed in ChemNER, namely, tmChem
and ChemSpot. It is important to note that, in this study,
the emphasis is on studying the effects of the tokenization
phase on the performance of the ChemNER task rather
than the absolute NER performance. ChemTok can then be
implemented in chemical NER systems.

2. Methods

2.1. Tokenization. Tokenization methods may vary depend-
ing on the context and the aim of the task [5, 23, 24]. The
simplest tokenization method is breaking text into white
space separated segments. In the commonly used newswire
domain every token is equivalent to a word or a special
character such as a punctuationmark or a digit. In some other
domains such as the biomedical or chemical/drug domain,
segmentation of text merely by using spaces would be neither
adequate nor appropriate due to the variety of the nomen-
clatures utilized in the domain, inconsistent use of spaces,
presence of punctuationmarks inside NEs, constant addition
of new terms, use of technical terminologies, nonstandard
orthography, and existence of ambiguous punctuations [10,
25, 26].

For example, consider the following sentence from the
article with PubMed ID 23403395 which contains four
entities d-alpha-tocopheryl-co-pol, (TPGS), cisplatin, and
(HER2) (see [27]):

We developed a nanocarrier system of herceptin-
conjugated nanoparticles of d-alpha-tocopheryl-
co-poly(ethylene glycol) 1000 succinate (TPGS)-
cisplatin prodrug (HTCP NPs) for targeted co-
delivery of cisplatin, docetaxel and herceptin
for multimodality treatment of breast cancer of
high human epidermal growth factor receptor 2
(HER2) overexpression.

In the sample sentence given above, it can be seen that the first
entity name d-alpha-tocopheryl-co-poly is conjoined with
the nonentity text (ethylene glycol) and the two entity names
TPGS and cisplatin are also combined into one token using
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dash (-) character. Note, on the other hand, that the dash
character is integral to the entity (d-alpha-tocopheryl-co-
poly). In both cases identifying the NEs is difficult due to
the fact that tokenization does not match the original NE
boundaries resulting in incorrectly segmented entities.

Consider the second sentence in article with PMCID
104802 which contains only one entity (see [28]):

We describe a test which uses the ability of viable
cells to reduce 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyl tetrazolium bromide (MTT) to detect
resistance to a bactericidal drug, rifampin, in in
vitro-cultured Mycobacterium tuberculosis.

The entity 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetra-
zolium bromide contains white spaces inside the entity name
itself. Using a white space tokenizer would result in the
generation of 3 tokens: “3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyl”, “tetrazolium”, and “bromide”. Furthermore, if
the tokenizer segments text at punctuations the first token
listed in the previous case would be broken down into a
smaller tokens such as “3”, “-”, “(”, “4”. In order to accom-
modate the existence of multitoken NEs, NER tasks usually
utilize the IOB tagging scheme [29] where the first token in
a multitoken entity name is denoted by B-EntityName and
all subsequent tokens are tagged as I-EntityName. Nonentity
tokens are tagged as O. For example, the sentence fragment
“inhibition of NF-kappa B activation” which contains an
entity of type “chemical” is tokenized and IOB labeled as
follows:

inhibition O
of O
NF B-CHEMICAL
- I-CHEMICAL
Kappa I-CHEMICAL
B I-CHEMICAL
activation O
Machine learning based approaches used for NER require
tokenization followed by IOB labeling without prior knowl-
edge of NE boundaries as preprocessing steps. As a result,
incorrect segmentation of entity names during preprocessing
may result in the failure of correct labeling of tokens during
the classification stage which will have an adverse effect in the
classification performance of the NER system.

2.2. Proposed Tokenizer. In this section, we propose Chem-
Tok as a rule based tokenizer which uses manually extracted
rules from the training data set of ChemDNER task of
BioCreative IV.Overall, raw text is segmented at white spaces,
numbers, all punctuation marks, and non-English characters
such as Greek letters. Furthermore when two alphabetical
characters with different cases are used subsequently without
any space, the text is split into two tokens. Since learning
algorithms try to find unique and distinctive patterns in
order to categorize the tokens, it is important to produce
samples which are as discriminant as possible. This goal
can be achieved by generating the longest possible tokens
without incorporating irrelevant text that may violate the NE

boundaries. Consequently, the main novelty of the proposed
tokenizer is the application of the extracted rules in order to
merge the tokens split in the previous steps, thus producing
longer and more discriminative tokens. The algorithm of
ChemTok is depicted in Figure 1.

The first step of the algorithm simply tokenizes raw text
at white spaces.The second step utilizes two lists.The first list
contains domain specific affixes such as “Hyper”, “Anti”, and
“Amino”, constructed from external sources listed in [15, 30].
The second list contains all chemical entities in ChemDNER
train data. If a given token contains a substring that is found in
the first list, then the token is segmented at the corresponding
affix boundary.

For instance the tokens “Aminoacid”, “hyperinsuli-
naemia”, “Antiherpetic”, and so forth are split at this step.
These conjoined tokens are separated into two tokens since
these tokens can also be used separately as part of NEs.
Following this step, the second list is used to decide whether a
tokenwill be considered for further tokenization or not. If the
token is found in this list, it is assumed that theNEboundaries
are correctly segmented and no further tokenization is
required. The tokens that are not found in the second list are
further tokenized at delimiters such as punctuation marks,
Greek letters, and case changes of alphabetical characters.

The recombination rules (rules 1–4 from Table 1) in
Step 3 are extracted from the ChemDNER train corpus
in order to generate longer and thus more discriminative
tokens. Rule 1 merges the tokens that were split incorrectly
at punctuation marks. Rule 2 incorporates the balanced
containers around digits into the token which is crucial for
the recognition of formula entities in chemical domain.

Rule 3 is employed since Step 2.2 splits all words that
start with uppercase, followed by sequence of lowercase
including the common English words such as the ones which
appear as the first word in a sentence. In Rule 4, the list
of known chemical names containing chemical compounds,
basic chemical elements, amino acid names, and amino acid
chains [30, 31] is employed tomerge tokens. A slidingwindow
of 5 consecutive tokens is employed in a case insensitive
search. Finally, Rule 5 strips the tokens in plural form into
two tokens: one token for the base form of the word and one
token for the plurality suffix such as “s”, “es” or “ies”. This
case occurred frequently for entities in the SemeEval 2013
DDI corpus for both DrugBank and Medline training and
test corpuses. Table 1 presents the rules used in Step 3 of the
proposed algorithm and also gives an example for each rule.

3. Results and Discussion

In this section we compare ChemTok, with the tokenizers
of two well-known ChemDNER systems, namely, tmVar and
the tokenizer, for ChemSpot. The results are computed for
two different data sets: ChemDNER data set [20] used in
BioCreative IV event and the SemEval 2013 DDIExtraction
Task 9.1 corpus [21].

BioCreative IV ChemDNER is an international commu-
nity-wide effort that evaluates text mining and informa-
tion extraction systems applied to the biomedical domain.
ChemDNER task of BioCreative IV focuses on detection of
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Figure 1: ChemTok Algorithm.

mentions of chemical compounds and drugs, in particular
those chemical entity mentions that can subsequently be
linked to a chemical structure [4]. In particular, the entities
are classified into one of the 7 chemical classes: abbreviation,
formula, identifier, systematic, trivial, family, and multiple.

At present, the ChemDNER corpus is the most compre-
hensive publicly available chemical/drug related data set for
NER task in the chemical domain. The corpus consists of 3
parts; training, development, and test data sets.The train and
development sets contain 3500 abstracts each, and the test
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Table 1: Rules used in Step 3 of the algorithm.

Rule number Rule explanation
Example

Tokens after
Step 2

Merged
token

1
Numeric tokens which are separated by “.” or “,” or “/” or “-” or “ ” are integrated
into a single token.

125
,
12
,
12

125,12,12

2

If concatenated tokens from Rule 1 are surrounded by balanced containers such as
parentheses, braces, and brackets, both container tokens are conjoined into the
token.

(
1-3
)

(1-3)

3
Single uppercase tokens which are followed by sequence of lowercase letters as the
next token are recombined to a single token.

C
ommon Common

4
If the concatenation of consecutive tokens is found in the list of known chemical
names, they are merged into one token.

Na
CL NaCL

5 Apply the plurality rule to the tokens Acids Acids

Table 2: Details of BioCreative data set.

Data set Number
of abstracts

Number of
sentences

Number of NEs in each class Total number
of NEsSystematic Abbreviation Family Formula Identifier Multiple Trivial

Train 3500 30418 6656 4538 4090 4448 672 202 8832 29438
Development 3500 30445 6816 4521 4223 4137 639 188 8970 29494
Test 3000 8655 5666 4059 3622 3443 513 199 7808 25310

data set contains 3000 abstracts. Table 2 shows the details of
each data set. All sets include raw abstracts and annotation
files listing eachNamedEntity together with its exact position
in the corresponding abstract using character offsets.

The SemEval 2013 DDIExtraction task which also focuses
on the biomedical literature consists of two challenges:
(i) recognition and classification of drug names and (ii)
extraction and classification of drug-drug interactions [21].
In this study only the corpus of first task, namely, Task 9.1, is
considered. This corpus consists of 826 texts (626 DrugBank
texts and 200 Medline abstracts). Each subcorpus is further
split into two separate sets, as train and evaluation data sets.
The corpus is distributed in XML format which contains
character offsets of the NEs.The entities in this corpus belong
to one of the 4 classes: drug, drug n, brand, and group. Table 3
presents details on the DDI corpus used in the study.

Table 4 shows the number and length of tokens produced
by a generic white space tokenizer, ChemSpot tokenizer,
tmVar, and ChemTok for each of the data sets described
above. Additionally the number of incorrectly segmented
entity names is given as the third column for each data set.

Thephenomenonwe refer to as the incorrectly segmented
entities is important since the NER classifiers will not
be able to identify NEs correctly if the entity names are
not segmented at the boundaries. In addition to incorrect
segmentation problems associated white space tokenization
whose examples were given in Section 2.1 several other
factors lead to incorrect segmentation even when other types
of tokenizers are used. For example, often an entity name

appears in its plural form in text, such as “clonidines” or
“salicylates”where the actual entity is annotated as “clonidine”
or “salicylate”. Such plural forms are usually incorrectly
segmented by many tokenizers. Due to the use of Rule 5 in
Step 3 of the proposed algorithm ChemTok does not suffer
from plural forms. In some other cases the desired entity
name appears as part of a longer text such as the case of
“hyperinsulinaemia” where the annotators annotate “insulin”
as the NE. Finally, sometimes NEs are wrongly joined to
other parts of text during various stages of text preprocessing
such as the example of “CONCLUSIONGlucose” where the
annotators mark “Glucose” as the NE but a tokenizer which
uses a rule to split NEs at the point where there is a case
change will incorrectly segment the NE to “lucose”. The
second and third type of incorrect segmentation is very
difficult to detect.

It is depicted in Table 4 that the generic white space tok-
enizer tokenizes the text into fewer number of longer tokens
but produces very large number of incorrectly segmented
entities compared to all other tokenizers. On the other hand
it can be observed that even though ChemTok produces
slightly longer tokens compared to ChemSpot and tmVar,
the number of incorrectly segmented entities is minimized
showing that the boundaries of NEs are correctly identified
by the proposed tokenizer. This effect is most evident on
the train and development sets of the ChemDNER corpus as
well as the train set of the DrugBank data set. Although, the
decline in the number of incorrectly segmented entities when
ChemTok is used on the ChemDNER corpus is expected,
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Table 3: Details of DDI corpus.

Data set Number of documents Number of sentences Number of NEs in each class Total number of
Named EntitiesDrug Group Brand Drug n

Train
DrugBank 572 5675 8197 3206 1423 103 12929
Medline 142 1301 1228 193 14 401 1836

Test
DrugBank 54 145 180 65 53 5 303
Medline 58 520 171 90 6 115 382

Table 4: Comparison of number of tokens, average token length, and number of incorrectly segmented entities for various tokenizers.

Data set ChemSpot tmVar ChemTok White space Tokenizer
NT ATL NISE NT ATL NISE NT ATL NISE NT ATL NISE

Chem DNER
Train 907405 4.62 40 965056 4.35 11 899343 4.66 6 718244 5.84 9189
Development 901610 4.64 36 958475 4.36 11 893180 4.68 3 714287 5.85 9174
Test 779700 4.63 8 828001 4.36 3 772847 4.67 3 513630 5.85 7804

DrugBank
Train 127435 5.06 50 135625 4.76 48 126753 5.09 6 107409 6.00 4623
Test 3189 5.12 1 3407 4.79 1 3174 5.14 0 2665 6.12 116

Medline
Train 32625 4.77 2 34178 4.55 2 32259 4.82 1 27066 5.75 431
Test 12978 4.85 0 13673 4.61 0 12875 4.89 0 10839 5.11 96

NT: number of tokens, ATL: average token length, and NISE: number of incorrectly segmented entities.

the fact that there is a pronounced decline in a new corpus,
namely, DrugBank train data, suggests that the rules used
generalize well to other corpora in this domain.

In order to further investigate the impact of the tok-
enization approaches discussed onNERperformance, several
classification experiments are conducted using data tok-
enized by each of the three tokenizers. Two state-of-the-art
classification algorithms, SVM and CRFs, were used for this
purpose. Yamcha [32] toolkit has been used for realizing
the SVM, whereas Mallet [33] toolkit has been used for
implementing the CRFs classifiers. Both toolkits are trained
using default settings. In particular, the SVM employed by
Yamcha is trained in the one-versus-all mode with a second-
degree polynomial kernel. The cost per unit violation of
the margin is set to 1 and the tolerance of the termination
criterion is set to 0.001. Yamcha has been used in the forward
parsing mode.

SimpleTagger interface of Mallet is used with default
parameters where the number of iterations is set to 500 and
Gaussian variance is 10. All systems were trained using the
set of features which have been used successfully for NER in
this domain. Table 5 shows the list of features used grouped
according to their types.The exact features used in each group
are shown in column 2 of Table 5. Features from 7 different
groups have been used resulting in 25 distinct features.

In order to conduct experiments on the BioCreative IV
corpus, the train data for this corpus is used to train the
classifiers. The recognition performance is tested on the
development set and the test set separately. As previously

mentioned, the SemEval 2013 DDI data consists of two
corpora, namely, DrugBank and Medline. Each of these
corpora consists of separate train and test data sets. The NER
performance of the classifiers on theDDI data is studied using
train and test data sets of DrugBank and Medline corpora
separately. Standard 𝐹-score is used in order to compare the
classifier performances.

The effect of tokenization onChemNER is discussed from
two different perspectives: the overall NER performance and
class based performance. Table 6 shows the microaveraged
overall 𝐹-scores obtained when the two classifiers trained on
BioCreative train data are tested on development and test data
sets separately.

Similarly, Table 7 shows the microaveraged overall 𝐹-
score obtained when the classifiers are trained and tested on
DDI DrugBank and Medline corpora.

It can be seen from Tables 6 and 7 that the overall
NER performance of the classifiers which used the white
space tokenizer is very inferior compared to that of all other
classifiers as a consequence of the large number of incorrectly
segmented entities. On the other hand the performance of
the classifiers utilizing ChemTok is higher regardless of the
learning algorithm.

The higher improvement over the other two tokenizers
when the BioCreative data is used to test the performance can
be attributed to the fact that ChemTok uses rules extracted
from the BioCreative data set. Nevertheless, it is evident in
Table 7 that theNER systems usingChemTok still outperform
the NER systems using the other two tokenizers indicating
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Table 5: Features used for training classifiers.

Feature set Actual features in the feature set
Number of

features used in
set

Space features Has right space, has left space, and has both right and left space 3
Context words One token before and one token after current token 2
n-gram affixes n-gram affixes (prefixes + suffixes) for 𝑛 = 1 : 4 for each token 8

Word shapes
Word shape (number of uppercase, lowercase letters, digits, punctuation, and Greeks),
digital word shape (word shape in digital format), and summarized word shape
(combination of two aforementioned features)

3

Orthographic features All uppercase, has slash, has punctuation, has real number, starts with digit, starts with
uppercase, has more than 2 uppercase letters 7

Token length Number of characters in the token 1
Common chemical prefixes
and suffixes Contains chemical affixes from the list of chemical affixes in [15] 1

Table 6: NER performance (𝐹-score in %) of classifiers using
BioCreative data set.

Tokenizer
Classification algorithm

CRF SVM
Development Test Development Test

White space 75.39 75.44 75.65 75.67
ChemSpot 78.46 78.89 83.26 82.88
tmVar 76.15 76.50 82.29 82.27
ChemTok 81.77 81.89 85.15 84.94

Table 7: NER performance (𝐹-score in %) of classifiers using
DrugBank and Medline corpora of DDI SemEval data set.

Data set Tokenizer Classification algorithm
CRF SVM

DrugBank

White space 77.89 82.85
ChemSpot 87.16 89.10
tmVar 84.74 90.34

ChemTok 88.65 91.79

Medline

White space 51.51 42.41
ChemSpot 62.72 67.48
tmVar 62.04 67.50

ChemTok 64.88 68.51

that the proposed rules generalize well to other data sets in
the domain. It can also be observed from Table 7 that the
classification performance achieved using DugBank data set
is much higher compared to the performance achieved on
Medline data set regardless of the learning algorithm and
tokenizer used. In fact this result is not surprising since
similar results have already been reported by all participating
teams in the SemEval 2013 DDIExtraction Task 9.1 [22]. This
result may be due to two reasons. Firstly, the train data set
of the DrugBank data set is almost 4 times larger than the
Medline train data set (see Table 4). As is well known, the size
of train data set has a big effect on classification performance.

The second reason lies in the different compositions of the
two data sets. Although the percentage of the most popular
entity is “Drug” in both data sets, the numbers of other
entity types differ largely (see Table 3). In fact 12% of all
entities in the DrugBank set belongs to “Brand” entity where
only 1.5% of all entities belong to this type in the Medline
data set. On the contrary, 23% of entities belong to the
“drug n” type in the Medline set where this number remains
at 1% for the DrugBank data set [34]. It is further known
that the classification of entities in the “Brand” category is
easier to recognize since they are usually short, easy, and
unique entity names; however the entities in the “drug n”
category are more difficult to recognize due to the variations
and complexity constituting the NEs [22]. The classification
performance according each entity type is discussed next.

The effect of the proposed tokenization method on
ChemDNER is further examined by checking the NER
performance of the classifiers individually for each class
(entity type) present in each data set. Since the performance
of the white space tokenizer has been shown to be inferior to
all other methods, the class based analysis of results for this
tokenizer is excluded from the remaining of the discussion.
Tables 8 and 9 illustrate the class based performance of each
classifier using the three tokenizers on the BioCreative and
SemEval 2013 DDI data sets, respectively.

It can be seen from the results in Table 8 that NER
performance is improved for all classes present in the data
set when ChemTok is used. Results in Table 9 show that the
classifiers which utilize data tokenized by ChemTok perform
better in 22 out of 24 possible comparisons that can be
made with the classifiers which use the other tokenizers. The
only 2 exceptions arise when tmVar outperforms ChemTok
for class “Brand” when SVM is utilized in the DrugBank
data set and for class “Drug n” when CRFs are utilized
for Medline data set. In the former case the difference
in classification performance between tmVar and ChemTok
is only 1%. The latter case takes place where the overall
classification performance of all classifiers is very poor. In
8 cases, a comparison cannot be made since all classifiers
fail to recognize any entities correctly in the particular class
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Table 8: Class based performance (𝐹-score in %) for BioCreative corpus using various tokenizers.

Algorithm Entity type Development set Test set
ChemSpot tmVar ChemTok ChemSpot tmVar ChemTok

CRF

Abbreviation 68.14 66.58 68.68 67.20 65.42 68.86
Family 69.22 67.59 72.67 71.94 70.60 74.91
Formula 76.57 69.70 80.12 75.29 69.81 79.37
Identifier 63.03 59.45 74.60 63.88 61.55 74.28
Multiple 32.50 26.86 41.35 32.77 30.50 35.12
Systematic 79.41 78.09 82.85 79.95 78.33 83.11
Trivial 85.62 84.11 88.36 85.52 83.69 87.66

SVM

Abbreviation 72.59 72.12 74.50 72.42 71.65 73.75
Family 69.82 69.69 71.99 71.81 71.57 74.31
Formula 82.667 81.61 84.68 82.15 81.68 85.28
Identifier 72.08 69.76 72.52 74.60 74.76 77.18
Multiple 36.06 34.31 39.26 26.89 20.96 30.46
Systematic 82.33 81.51 84.73 82.10 81.49 84.44
Trivial 86.73 85.85 88.84 86.50 86.14 88.51

Table 9: Class based performance (𝐹-score in %) for SemEval DDI data set; DrugBank, Medline.

Algorithm Entity type DrugBank Medline
ChemSpot tmVar ChemTok ChemSpot tmVar ChemTok

CRF

Group 76.33 72.86 79.16 62.41 59.25 64.31
Drug n 0.0 0.0 0.0 10.44 13.63 12.48
Brand 86.31 80.85 89.97 0.0 0.0 0.0
Drug 89.77 86.85 91.32 74.57 74.22 76.15

SVM

Group 83.82 83.58 85.12 46.28 44.06 49.13
Drug n 0.0 0.0 0.0 10.93 11.02 11.67
Brand 92.15 94.11 93.45 0.0 0.0 0.0
Drug 91.66 89.32 93.52 68.04 67.06 71.71

regardless of the learning algorithm or the data set used.This
result can be explained by the fact that only 1% (130 out of
15756) of the entities in the DrugBank data set belong to class
“Drug n” and 1.5% (42 out of 2746) of entities in the Medline
data set belong to class “Brand” [34].

Evidently, the improvement in NER scores obtained for
individual classes is reflected in the overall𝐹-scores presented
in Tables 6 and 7. The observation that the use of ChemTok
results in a NER improvement for almost all classes using
three different data sets suggests that individual rules used by
ChemTok affect each entity class depending on the structure
of tokens used in the respective class. For instance, Step 2.1
of the proposed tokenization algorithm correctly segments at
affixes resulting in a positive effect on the entities belonging
to the “Family” class in the BioCreative data set and entities
in the “Group” class in the SemEval DDI corpus. Step 2.2
of the algorithm ensures that tokens which are already
known are not further tokenized improving the tokenization
performance of the mentioned entities in the “Trivial” class
and all entities in the SemEval DDI corpus. Rule 1 used at
Step 3 makes correct segmentation at entity boundaries for
entities which belong to “Multiple,” “Systematic,” “Formula,”
and “Identifer” classes since the NEs in these classes contain

digits and punctuations. Rule 2 mainly affects the entities in
the “Formula” and “Systematic” classes which extensively use
parenthesis in the entity names. Rule 3 improves tokenization
for the entities in the “Trivial” class of BioCreative data set
in addition to all the entities in the SemEval DDI data set
through a lookup table of the known names.

4. Conclusions

Nonstandard nomenclature used in chemical text makes the
use of standard tokenization methods for the ChemNER task
difficult. In this study, a new rule based tokenizer which
derives many of its rules from the train data set of a recent
well knownChemNER task has been proposed.Theproposed
method is compared to the tokenizer components of two
state-of-the-art ChemNER systems in terms of number of
incorrectly segmented entities and overall NER performance
using two learning algorithms, CRFs and SVM. Results sug-
gest that ChemTok outperforms the other two tokenization
methods in both aspects for two different data sets used for
evaluation. Futureworkmay involve the use of a larger corpus
in order to improve the performance as well as devise possible
new rules.



BioMed Research International 9

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] PubChem, “The PubChem Project,” http://pubchem.ncbi.nlm.
nih.gov.

[2] N. Chinchor and P. Robinson, “MUC-7 named entity task
definition,” in Proceedings of the 7th Conference on Message
Understanding, p. 29, New York, NY, USA, September 1997.

[3] E. F. T. K. Sang and F. De Meulder, “Introduction to the
CoNLL-2003 shared task: language-independent named entity
recognition,” in Proceedings of the 7th Conference on Natural
Language Learning at HLT-NAACL 2003 (CONLL ’03), vol. 4,
pp. 142–147, Association for Computational Linguistics, 2003.

[4] M. Vazquez, M. Krallinger, F. Leitner, and A. Valencia, “Text
mining for drugs and chemical compounds: methods, tools and
applications,” Molecular Informatics, vol. 30, no. 6-7, pp. 506–
519, 2011.

[5] J. Jiang and C. Zhai, “An empirical study of tokenization
strategies for biomedical information retrieval,” Information
Retrieval, vol. 10, no. 4-5, pp. 341–363, 2007.

[6] R. Arens, “A preliminary look into the use of named entity
information for bioscience text tokenization,” in Proceedings
of the Student Research Workshop at HLT-NAACL (HLT-SRWS
’04), pp. 37–42, Association for Computational Linguistics,
Boston, Mass, USA, May 2004.

[7] N. A. Bennett, Q. He, K. Powell, and B. R. Schatz, “Extracting
noun phrases for all of MEDLINE,” in Proceedings of the
AMIA Symposium, pp. 671–675, American Medical Informatics
Association, Washington, DC, USA, 1999.

[8] K. Seki and J.Mostafa, “An approach to protein name extraction
using heuristics and a dictionary,” Proceedings of the American
Society for Information Science and Technology, vol. 40, no. 1, pp.
71–77, 2003.

[9] M. Kayaalp, A. R. Aronson, S. M. Humphrey et al., “Methods
for accurate retrieval of MEDLINE citations in functional
genomics,” in Proceedings of the Notebook of Text REtrieval
Conference (TREC ’03), vol. 2003, pp. 175–184, 2003.

[10] N. Barrett and J. Weber-Jahnke, “Building a biomedical tok-
enizer using the token lattice design pattern and the adapted
Viterbi algorithm,” BMC Bioinformatics, vol. 12, supplement 3,
article S1, 2011.

[11] R. Leaman,C.-H.Wei, andZ. Lu, “tmChem: a high performance
approach for chemical named entity recognition and normal-
ization,” Journal of Cheminformatics, vol. 7, supplement 1, article
S3, 2015.

[12] ChemSpot Tool, WBI, 2013, https://www.informatik.hu-berlin
.de/de/forschung/gebiete/wbi/resources/chemspot/chemspot.
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